

ACTORS AND STRUCTURE OF MODERN E-LEARNING SYSTEMS

Ionuţ Reşceanu

University of Craiova, Faculty of Automation, Computers and Electronics,

 Department of Mechatronics, Romania

Abstract: E-learning is the continuous assimilation of knowledge and skills by adults

stimulated by synchronous and asynchronous learning events — and sometimes

Knowledge Management outputs — which are authored, delivered, engaged with,

supported, and administered using Internet technologies. The first e-learning systems

were actualy web sites which contained some electronic materials and primitive tests.

Also, there were few categories of actors within those systems. Modern age e-learning

systems are based on the notion of lesson. The people involved are grouped within

several categories. The present paper tries to present those categories and also to

highlight the structure of the main entity of modern e-learning systems – the lesson.

Keywords: learning systems, computer applications, computer systems, computer-aided

instruction

1. INTRODUCTION

Training materials and instructional information that

is delivered electronically over the Web, through an

organization’s intranet, or via CD-ROM, is known as

e-Learning. An online course is a popular type of e-

Learning which can include test questions. Using

multimedia and interactive technology to illuminate

the topic, e-Learning can engage the learner with

video and audio features, self-paced navigation, and

options such as pop-up hints and hyperlinks to

related topics.

In a world where access to information is the key to

staying competitive, organizations rely on people

who are continually learning new skills, crafting

innovative solutions to changing circumstances, and

staying informed and responsive. With e-Learning,

you can provide affordable training to as many

employees or business partners as you need, at any

time, from any location. You can create an instant,

state-of-the-art learning system in a fraction of the

time needed to implement a more traditional solution.

You also have access to solid reporting tools that

allow you to easily track both student progress and

your training budget. (Hall, 1997)

When you compare e-Learning with traditional

classroom training, e-Learning has many advantages.

One advantage is cost savings. Corporations and

schools often need to stretch funds while maintaining

high-quality training programs. The cost of

developing, distributing, and maintaining an e-

Learning application is often much less than the cost

of an instructor-led training program. Online learning

can help organizations let the most out of their

budgets and can add valuable learning tools and

techniques.

Another advantage to e-Learning is the ability to

update any topic in your published content and

deliver the results instantly over the Internet or an

intranet. Now all of your learning material can be up-

to-date without the expense of reprinting a book,

storing inventory, or manually distributing an update.

In an online course, you can deliver an unlimited

number of colorful graphics and special effects that

direct attention to the important points in the learning

material. Students can interact with new material

right away, by answering practice questions and

directing their own learning pace. (Morrison, 2003)

2. MODERN E-LEARNING SYSTEMS

Project planning is a preliminary step in which you

evaluate your resources, decide your distribution

strategy, develop a user profile, and then document

your research and choices. This process, while

sometimes time consuming, is effort well spent: the

result is a road map for your project that can help you

to measure expectations, activities, and results. In

addition, planning can help maximize resources—if

you get it right the first time, you won’t have to

spend time and money doing it over. This section

describes some factors to consider when planning

your e-Learning course.

Understanding the people for whom you’re

developing an e-Learning application is crucial to the

success of the project. Developing a user profile will

help you to keep focused on your audience and to

judge the appropriateness of your content and

methods. You can use both formal and informal

methods to analyze your users—consider

interviewing them, observing their work, visiting

trade shows, or reading their professional journals or

documentation materials.

When gathering information for a user profile,

determine some of the following. How experienced

are they with the material? What age ranges or

cultural groups do they represent? What is their level

of education? What are their learning styles? How

computer-savvy are they? Try to evaluate their

environment as well. For example, do they sit, stand,

or move around? Is it noisy or quiet, dark or bright?

These factors affect your choice of content,

instructional approach, and page layout.

A modern e-learning system is based on the concept

of lessons and their versions. A Lesson is in fact a

discussion topic. The peoples that work on a lesson

will provide several implementations of that specific

topic. (Horton and Horton, 2003)

There are several types of users found within the e-

learning system. Some of those users can be

considered “producers” while others can be called

“consumers”. In the following all the users found

within the system are presented:

• Lesson Developer The lesson developer is

the creative force behind the lesson system.

He can browse the lesson catalog then select

and download an empty lesson for further

development. He also has the possibility to

request the editor for the holder right of a

particular lesson An author can upload a

lesson to the Collaboration Area – a lesson

pool where he (and the Co-Authors) can

share (upload and download) intermediate

lesson versions. If the Author has Holder

right, he can also submit his version for

revision to the Editor as Request to Edit

Version (REV). Alternatively, he can select

one of the versions in the Collaboration

Area as the Request to Edit Version and

submit it to the Editor. Note: each lesson has

its own Collaboration Area for the authors

working on it. Once the lesson is submitted

to the Editor for review, the Request to Edit

Version is locked until an Editor either

qualifies the lesson for the next level

(Publishing) or returns feedback to Author

on how to further improve the content.

Lesson sharing is also freely available

outside the Collaboration Area – the Author

can export the local lesson to one file and

send it by e-mail or disk to other Authors.

• Extended Developers A E-developer is like

the Lesson Developer with additional rights

granted on a lesson basis. As such, E-

developer can perform all the developer

actions described in the above section. In

addition below are described the tasks that

are specific to a E-developer.

• Learner The Learner is the ultimate target of

the System. Upon registration within the

system a learner can download the Learner

Kit; he follows interactive lessons and takes

administered exams and tests. He has an

assigned Tutor, who creates his Learning

Path and monitors his progress. Tools are

provided for seamless communication

between the Learner and the Tutor. The

System extracts and uploads relevant data

from Learner’s study patterns and exams,

allowing the Tutor insightful performance

reviews.

• Tutor The Tutor is the direct supervisor of a

Learner. He creates (or selects from a

system list) the Learner’s Learning Path,

evaluates his performance and provides the

Learner with feedback on the results and

progress. The Tutor uses tools to freely

communicate with his Learners.

• Editors The Editor is responsible with

issuing and revoking authorization for

Lesson Developers; he grants and revokes

the E-Developer right to an Lesson

Developer for a specific lesson. The Editor

also assures the quality control for all new

lessons and re-created lessons. He analyzes

the requests submitted by Lesson

Developers to add new lessons in the

catalog and reviews a lesson submitted by

an Author as Request to Edit Version.

• Publisher The Publisher receives the lessons

approved by the Editor and performs a final

verification on the content. In this he mainly

checks for violations of the Law of Author

Rights. If such violations are encountered,

he informs the Editor and provides him with

feedback on the reasons. In case the lesson

is approved for publishing, the lesson is

marked as ‘Currently Published’ and thus

available to be chosen in the learning path of

students.

Each actor represents a distinct entity with behavioral

characteristics within the e-learning system. Since

the Lesson is at the core of the system organization

and workflow, we will present a graphical

representation of the standard Lesson workflow –

from it’s inception to review and further to inclusion

in the high quality, production lesson area. (Gagne

and Medsker, 1996)

2.1 Lesson Workflow

Several steps have been identified within a lesson’s

workflow, which are described as follows:

1. The Lesson Developer asks for an empty

lesson to be inserted into the lesson

catalogue and gives the necessary

description for it

2. The Editor validates Lesson Developer

‚srequest and inserts a new empty lesson

into the Lesson Catalogue

3. Editor inserts (on self initiative) a new

empty lesson into the Lesson Catalogue

4. Lesson Developer browses the Lesson

Catalogue and downloads empty lesson to

be modified in Author module

5. Lesson Developer (Extended Developer)

selects Co-Authors for a lesson

6. Lesson Developer and Co-Lesson Developer

create the lesson in the Collaboration Area

7. Extended Developer uploads the created

lesson to Editor for review. This version

submitted to Editor for review is called

Request to Edit Version

8. Editor reviews lesson (can edit and make

changes)

9. Lesson is accepted and Editor submits

lesson to Publisher. This version submitted

to Publisher for review is called Request to

Publish Version

10. Lesson is declined and Editor informs

Lesson Developers of this

11. Lesson is published by Publisher and

available to students for download. At this

point the lesson has status Published

Version

12. Editor makes a request to Publisher to mark

a lesson as ‘Out of Publish’

13. Publisher marks a lesson as ‘Out of Publish’

(on self initiative)

14. Publisher marks a lesson as ‘Archive’ when

it no longer appears in any student learning

path (Cooper, 1995).

2.2 Lesson Structure

The lesson is at the core of the entire system.

Physically a lesson can be viewed as a zip archive

which contains HTML, XML and image files and a

set of metadata which is stored into the local

database. Each lesson contains a HTML page where

a short description of the lesson is written. From the

logical point of view a lesson is a collection of tasks,

each of it containing a set of problems.

2.3 Lesson Tasks

A task is physically represented by a HTML page

and a set of images. Inside a task theoretical aspects

are presented. Each task covers a small direction of

study and its purpose is to teach the student

something related to the lesson topic. Based on the

information contained within the HTML page there

are several types of tasks:

• Entry tasks

• Main tasks

• Parallel Tasks

• Comprehensive tasks

• Explorer tasks

• Test tasks

When a task is defined by the author it is

automatically added to one of the previously defined

groups. For each task a name is stored and a flag

which signaled that it can be added to a final test. In

the viewer the test will be generated dynamically and

it will contain 5 tasks chosen from a task pool which

contains the test tasks defined by the author and the

other tasks which have the “can be in test flag” set.

The only tasks that can not be added to tests are

Entry tasks and Explorer tasks.

Entry tasks. Those tasks contain information that

helps the student to remember thinks that he learned

in the previous lessons and that can be used to solve

the current lesson. Those tasks can not be added in

tests as they are not strictly related to the current

lesson’s topic. This kind of tasks usually contains

very simple problems and the score the user get at

those problems does not count very much for the

final lesson score.

Main tasks. Those tasks contain information that

helps the user to understand the current lesson. They

can be added to tests. The learner is advised to finish

all main tasks before even starting the test, although

this is not mandatory. Solving their problems well is

crucial for the user to obtain a good final score from

the tutor.

Parallel tasks. The parallel tasks are not strictly

related to the lesson, but to a main task. This means

that a main task can have several parallel tasks

attached. The idea behind the parallel tasks is to

present the same idea presented in the main task, but

in a different form. By reading the parallel task the

user can understand better the lection. Those tasks

can be added in tests. Since those tasks can be

considered a part of the main tasks, solving them is

somehow crucial for the user to obtain a good final

score from the tutor.

Comprehensive tasks. If the main tasks present the

lesson from a more theoretical point of view, the

comprehensive tasks help the user to understand how

to apply what he learned or how to interconnect the

separate main tasks information. Those tasks can be

added in test. Also, solving their problems well is

somehow crucial for the user to obtain a good score.

Explorer tasks. Those tasks contain information

which takes the user a little further that the lesson

boundaries. Usually the user can find here details

about the lesson which is not actually required for

passing the lesson test. Those tasks are meant for

users that want to study more that it is required.

Those tasks can not be added in tests, but solving

their problems well can give the student some

additional points in the final score.

Test tasks. Those tasks, as their name suggest, are

designed only for tests. They usually contain only

brief theoretical information, but solving their

problem is mandatory for the user to obtain a good

score. As their name suggests, those tasks can be

found in tests. Usually an author chooses to create

several test tasks which will for the final test instead

of marking main, parallel or comprehensive tasks as

tests. The reason is quite simple to understand.

2.4 Lesson problems

As I’ve presented earlier a task can contain several

problems. In fact solving those problems is the main

purpose of the entire lesson. It is not important if the

student had read the task information as long as he

managed to solve the attached problems. From

physical point of view a problem can be seen as a

collection of HTML, XML and image files. If a task

contained only a single HTML page, a problem

contains several, as follows:

• A problem information page: this page

contains general information about the

problem. It contains the problem body and

the problem question. It is displayed when

the user starts working on a problem

• A hint page: this page contains some hints

that will help the user when solving the

problem. When the problem appears in a

test, the hint page can not be displayed for

obvious reasons.

• A solution page: this page contains the

solution for the problem. It can be displayed

only after the user has finished solving the

problem. The solution can be defined as a

set of steps. The author is the one that

decides this. The user will then see one step

at a time.

Beside the html pages the problem contains an XML

file which holds the problem options and their truth

values. The structure of the XML files varies based

on the problem class, as it will be presented in the

following.

The system permits 3 problem classes:

• Multiple choice

• Matching

• Open Answer.

Multiple choice. Multiple choice problems, as their

name suggests, contain a set of clickable options each

having an attached true/false value. The user can

select several options. A selected option can not be

unchecked neither clicked again. Thus the truth value

is strictly related to the option. The answer XML file

looks as follows

<?xml version="1.0" encoding="UTF-8"?>

<choice

xmlns="http://www.elearning_site.net"

xmlns:xsi="http://www.w3.org/2001/XML

Schema-instance"

xsi:noNamespaceSchemaLocation="./sche

ma.xsd">

 <options>

 <option optionid="1" truth="1">

OPTION 1 TEXT

 </option>

 <option optionid="2" truth="0">

OPTION 2 TEXT

 </option>

 <option optionid="3" truth="1">

OPTION 3 TEXT

 </option>

</options>

 <feedbacks>

 <feedback feedbackid="1">

FEEDBACK 1 TEXT

 </feedback>

 <feedback feedbackid="2">

FEEDBACK 2 TEXT

 </feedback>

 <feedback feedbackid="3">

FEEDBACK 3 TEXT

 </feedback>

</feedbacks>

</choice>

As it can be seen from the previous XML each option

has an attached id and a truth value. Also, for each

option, there is a feedback which will be displayed to

the user after the option has been selected. (Roberts,

1999; Schmeiser, 1997, William and Tollet, 1998)

The MC class contains 3 types of problems: classical

multiple choice (MC), select (SLT) and self check

(SC).

Select problems are a particular case of Multiple

Choice problems. The main difference is that the

options are only text.

Self check problems consist on two phases. In phase

one the student has to freely write a text based on a

given topic. After this writing is done, the student is

asked several questions about the content of his

writing. Each question has a truth value attached.

Based on its answers, the system will provide a score.

The actual score of this problem will be computed by

the tutor after analyzing the writing and comparing it

to the answers.

Matching. The Matching problems contain a set of

clickable options called “leaders” and another set

called “followers”. Each leader is logically connected

to one and only one follower. The user has to first

click on a leader and then on a follower. If the two

are logically connected, the selection is marked as

true. Otherwise the selection is considered false. The

answer XML file looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<matching

xmlns="http://www.elearning_site.net"

xmlns:xsi="http://www.w3.org/2001/XML

Schema-instance"

xsi:noNamespaceSchemaLocation="./sche

ma.xsd">

 <leaders>

 <leader leaderid="1">

Leader 1

 </leader>

 <leader leaderid="2">

Leader 2

 </leader>

 <leader leaderid="3">

Leader 3

 </leader>

 </leaders>

 <followers>

 <follower followerid="1">

Follower 1

 </follower>

 <follower followerid="2">

Follower 2

 </follower>

 <follower followerid="3">

Follower 3

 </follower>

 </followers>

 <links>

 <link leaderid="1" followerid="2">

 </link>

 <link leaderid="2" followerid="1">

 </link>

 <link leaderid="3" followerid="3">

 </link>

 </links>

 <feedbacks>

 <feedback feedbackid="11"

leaderid="1" followerid="1">

 leader 1 -> follower 1

 </feedback>

 <feedback feedbackid="21"

leaderid="2" followerid="1">

 leader 2 -> follower 1

 </feedback>

 <feedback feedbackid="31"

leaderid="3" followerid="1">

 leader 3 -> follower 1

 </feedback>

 <feedback feedbackid="12"

leaderid="1" followerid="2">

 leader 1 -> follower 2

 </feedback>

 <feedback feedbackid="22"

leaderid="2" followerid="2">

 leader 2 -> follower 2

 </feedback>

 <feedback feedbackid="32"

leaderid="3" followerid="2">

leader 3 -> follower 2

 </feedback>

 <feedback feedbackid="13"

leaderid="1" followerid="3">

 leader 1 -> follower 3

 </feedback>

 <feedback feedbackid="23"

leaderid="2" followerid="3">

 leader 2 -> follower 3

 </feedback>

 <feedback feedbackid="33"

leaderid="3" followerid="3">

 leader 3 -> follower 3

 </feedback>

 </feedbacks>

</matching>

The structure of this file is more complicated

compared to the previous one. First there are the two

option lists: leader and followers. For each of them

an id is known. The connection between leaders and

followers is stored in the link fields. For each leader

there is an attached link field which holds the

information about the attached follower. Link fields

contain no data. The last group of tags is the

feedbacks group. If for MC problems there were a

feedback for each option, here there is a feedback for

each leader-follower pair. Every time the user selects

such a pair the appropriate feedback is displayed.

(Roberts, 1999; Schmeiser, 1997, William and Tollet,

1998)

The MC class contains 4 types of problems: classical

matching (MT), select and write (SW), recall and

write (RW) and drag and drop (DD).

The select and write problems are a special case of

Matching problems. The main difference is that

leaders represent input text areas. The user sees the

list of followers and then writes one of those inside a

leader text field. If that follower and that leader are

identical, truth is signaled.

Recall and Write problems are identical to the

previous ones, the only difference being that the

followers are not displayed. The user has to write text

inside the leaders without knowing a list of possible

options.

Drag and Drop problems are a special case of

matching problems. In this case the leaders are

fragments of an image, while the followers are text.

The user have to click on a follower and then drag

and drop it on a leader.

Open Answer. In those problems the learner has to

write freely a text based on a given topic. This text is

then sent to the tutor who estimates it and it gives the

student a score. Those problems do not have an

answer XML file as there is no expected answer.

Also no solution or hint page is available for the

same considerations. The system can not compute

any estimate score and it is only the tutor who will

give any estimation. (Walter and Carey, 1996)

3. CONCLUSIONS AND FUTURE WORK

Modern e-learning systems are no longer based on a

simple web-site with a few types of users. The main

entity is now the lesson. Also, several types of actors

can be found in those modern systems. Each user

have a limited role within the system and thus he

does not require an intensive training for using the

entire system.

Once the application is placed on a Web server, it is

available immediately to your audience. And the

exchange is mutual: e-Learning allows course

developers to track and evaluate student scores,

giving them the information they need to measure the

effectiveness of their courses. (The American Journal

of Distance Education, 1997)

At this moment an implementation of the ideas

presented in this paper exists. The product uses a

client-server architecture. There are implemented two

tools: an authoring tool and a viewing and evaluation

tool.

The authoring tool used by authors (Lesson

Developers) to create the lessons. The lessons are

created as a collection of html pages and images. The

authoring tool contains an integrated complex html

editor.

The vieweing and evaluation tool is in fact a

modified web-browser. With it the students can view

and solve the problems from a lesson. At the end the

application computes their score and it displays it.

In the future I intend to improve the existing tools

and also to create similar application for the other

types of users (editor, tutor, publisher etc.)

4. REFERENCES

Cooper, A. (1995). About face: the essentials of

interface design, IDG Books, Foster City, CA.

Gagne, R. and K. Medsker (1996). The conditions of

learning: training applications. Fort Worth, TX:

Harcourt, Brace.

Hall B.(1997) Web-Based Training Cookbook. John

Wiley & Sons, Inc.

Horton W. and K. Horton (2003), E-learning Tools

and Technologies, Wiley Publishing

Morrison D.(2003), E-learning Strategies , Wiley &

Sons, Inc.

Roberts S. (1999), Programming Microsoft Internet

Explorer 5, Microsoft Press, ISBN: 0735607818

Schmeiser, L. (1997). Web design templates

sourcebook, New Riders Publishing,

Indianapolis.

The American Journal of Distance Education

Vol. 11, No. 3 1997, p. 76 - 78

Walter D. And L. Carey (1996). The Systematic

Design of Instruction, 4th ed. Harper Collins,

New York, NY.

Williams, R. and J. Tollett (1998). The non-

designer’s web book, Peachpit Press, Berkley,

CA.

